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Collections of random packings of rigid disks and spheres have been generated 
by computer using a previously described concurrent algorithm. Particles begin 
as infinitesimal moving points, grow in size at a uniform rate, undergo energy- 
nonconserving collisions, and eventually jam up. Periodic boundary conditions 
apply, and various numbers of particles have been considered (N~<2000 for 
disks, N~< 8000 for spheres). The irregular disk packings thus formed are clearly 
polycrystalline with mean grain size dependent upon particle growth rate. By 
contrast, the sphere packings show a homogeneously amorphous texture sub- 
stantially devoid of crystalline grains. This distinction strongly influences the 
respective results for packing pair correlation functions and for the distributions 
of particles by contact number. Rapidly grown disk packings display occasional 
vacancies within the crystalline grains; no comparable voids of such distinctive 
size have been found in the random sphere packings. "Rattler" particles free to 
move locally but imprisoned by jammed neighbors occur in both the disk and 
sphere packings. 

KEY WORDS: Rigid disks; rigid spheres; random packings; amorphous 
solids; rattler particles; vacancies; grain boundaries. 

1. I N T R O D U C T I O N  

Motiva ted  by a wide variety of applicat ions in the physical and biological 
sciences, m a n y  investigations of r andom disk and  sphere packings have 

found their way into the scientific literature. While some of these studies 
can be classified as experimental ,  the recent activity has strongly been 
biased in favor of computer  simulation.  The present paper fits this latter 
description, and  extends the work reported in a predecessor. (1~ 
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In a broad sense, two types of packing constructions exist, the 
"sequential" methods (2-8) and the "concurrent" methods. (I'9-11) The first of 
these typically begins with small "seed," a fixed arrangement of particles, 
which then grows by addition of further particles one by one until a large 
aggregate has been formed. The algorithm used for placing particles in con- 
tact with those already present can either be deterministic or stochastic. By 
contrast, the concurrent methods have the entire collection of particles pre- 
sent from the outset, and utilize some appropriate procedure for arranging 
them finally into a jammed configuration. One of the important objectives 
is establishing the statistical differences between packings produced by 
these various methods. 

Our earlier paper (I) presented a concurrent method for generating 
rigid particle packings. Its basic concept was to start with a random collec- 
tion of points, assign them random velocities, and grow them at a uniform 
rate into the repelling particles of interest until jamming occurred. 
Programming advances in design of event-driven algorithms (~2) permitted 
effective implementation of this packing model for relatively large numbers 
of particles. This prior study focused on the two-dimensional case, i.e., rigid 
disks in the plane. One of its surprising results was the frequent observa- 
tion of "rattler" disks in the packings, namely particles trapped but unjam- 
med in a cage of tightly jammed neighbors. This is a feature not expected 
nor observed to occur in disk packings produced by sequential methods. 

Our primary objective now is to apply our concurrent particle-growth 
model to the case of rigid spheres in three dimensions. This provides the 
opportunity to identify similarities and contrasts with the two-dimensional 
disk packings. In particular it is obvious to search for "rattler" spheres. 

Section 2 is devoted to some general remarks that provide a mathe- 
matical background for the computations. Section 3 recounts details of our 
concurrent method for generating rigid particle packings. Section4 
contains some new results for random disk packings that extend (but are 
consistent with) those of ref. 1. Sphere packing results appear in Section 5, 
along with commentary about comparisons with the disk case. The closing 
Section 6 summarizes conclusions, describes some feasible extensions, and 
indicates some important open problems. 

2. GENERAL REMARKS 

Consider a set of N identical D-dimensional spheres (D = 1, 2, 3, ...) 
confined to a rectangular region with size L1 x L2 x ... x Lb. Let a denote 
the common sphere diameter. We will demand that periodic boundary 
conditions apply in each of the D directions. Positions of sphere centers 
will be denoted by rl...rN------R, where R is a DN-dimensional vector. 
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In the following we shall be concerned about the set S(a) of non- 
overlap configurations R for the N spheres, i.e., those configurations for 
which all pair distances are at least a: 

Ire-r j l  >~a (2.1) 

Here index i runs over all N particles in s while j runs over those par- 
ticles and their periodic images in the 3 ~ - 1 contiguous cells. The content 
(measure) of the allowed region S(a) in the DN-dimensional configuration 
space 

C[S(a)] (2.2) 

is the subject of equilibrium statistical mechanics for the rigid particle 
systems. In particular it determines the equation of state (13a4) and hence it 
is fundamental to the existence of fluid-solid phase transitions. 

Obviously the content (2.2) is (s N, when a = 0 ,  and declines 
monotonically with increasing a, vanishing finally when a = a  . . . .  the 
largest common diameter that permits all N particles to be packed in f2 D 
without overlaps. This maximal diameter a .... will depend generally on all 
relevant parameters N, D, and the dimensions of f2 o. However, the fraction 

of s D covered by these particles 

= N S o ( a ) / f f 2  D 
(2.3) 

sD(a) = ~D/2aD/2DF(1 + D/2) 

is subject to the following upper bounds(i): 

~ < 1  ( D = I )  

7~ 
~< ~ = 0.906899... (D = 2) 

~ V a  
(2.4) 

~< ~ = 0.740480... (D = 3) 

The particle configurations represented by S(amax) consist of the 
densest possible packing(s) for the given N, D, and Y2 D, but unless N is 
very small, this is but a minor fraction of all possible packings. The other, less 
efficient (smaller ~), packings are associated with disconnections of S(a) 
with increasing a. Such disconnections constitute trapping of the system in 
small portions of the configuration space due to the nonoverlap restrictions 
(2.1), with consequent loss of dynamical ergodicity. Each disconnected 
portion may itself undergo further fragmentation with increasing a, but 
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eventually any fragment shrinks to vanishing content at some characteristic 
a = a p ,  corresponding to a particle packing p at common diameter ap. 

A useful definition of particle (line, disk, sphere .... ) packing is the 
following. 

Rigid particle packing: Geometrical arrangement of N nonoverlap- 
ping rigid particles in D dimensions for which the available continuous 
displacements permit fewer then DN degrees of translational freedom. 

Put more colloquially, the particles are jammed. On account of the 
periodic boundary conditions, the number of remanent translational 
degrees of freedom f is at least D; the presence of n mutually isolated 
rattlers in the packing would increase f to (n + 1) D. 

One significant way to classify disk or sphere packings is by the 
network of pair contacts, that is, the set of particle pairs for which 
]ri--rj] =ap. In order for a packing to satisfy the above definition, it is 
necessary for the graph of contact bonds to be above the critical percola- 
tion threshold; uninterrupted paths along such bonds must exist threading 
the fundamental cell (2 D and its periodic images in all directions. Some par- 
ticles, specifically the rattlers, may be disconnected from this contact-bond 
network. 

In any given packing p, the number of contacts experienced by particle 
i will be denoted by Z~(p). This set of numbers will include contacts within 
(2D as well as contacts across boundaries into the contiguous periodic 
images of f2D. We have the following obvious steric constraints: 

Z ~ 2  ( D =  1) 

~<6 ( D = 2 )  

~<12 ( D = 3 )  

(2.5) 

All Zi attain the upper limits shown if the packing is a close-packed crystal 
(gapless array in D = 1, triangular crystal in D = 2, face-centered cubic 
crystal or its stacking variants in D = 3). A necessary, but certainly not 
sufficient, condition for particle i to be jammed is given by 

Z,(p) >~ D + 1 (2.6) 

One also concludes that the number f (p )  of remanent translational degrees 
of freedom for packing p must obey 

1 
f(p)> DN-~ ~ Zi(p) 

i = l  

(2.7) 
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Figures 1 and 2 provide an illuminating pair of configurations for rigid 
disks. Both amount to triangular close-packed crystals with one-fourth of 
the disks missing. With appropriate choices for the cell side lengths L1 and 
L2 these configurations could be commensurate with the periodic boundary 
conditions imposed. For  both cases all particles experience exactly four 
contacts. Both of these patterns would be stable packings if enclosed by 
impenetrable walls. But with periodic boundary conditions they are unstable: 
in Fig. 1 vertical columns two disks wide can move vertically to free up the 
entire assembly, while diagonal lines of disks (as shown) can do the same 

Fig. 1. Low-density arrangement of disks, each one of which contacts four others. The 
density is three-fourths that of the vacancy-free triangular crystal. 
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in Fig. 2. However, note that plugging a single horizontal row of vacancies 
in either pattern with disks eliminates the instability. In a very large system 
this plugging would have negligible effect on the covering fraction 4. 
Clearly the contact numbers alone do not allow one to conclude that a 
configuration is a valid packing. 

Substantial interest resides in the large-system-limit properties of the 
packings. In particular, the density distribution of random packings has 
attracted attention. Suppose P(~ I D, N, L, 5) is the probability for attaining 
(within _+5) covering fraction ~ in packings generated by some construc- 

Fig. 2. An alternative disk arrangement which, like that in Fig. 1, has density equal to three- 
quarters of the maximum possible. This configuration is unstable with respect to the type of 
displacement shown, and therefore is not a packing. 
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tion procedure, for ND-spheres in a hypercube with sides L. The limiting 
distribution then is 

P ~ ( r  lira P(4iD, N,L,e) (2.8) 
s ~ O  N , L ~ o o  

For most "reasonable" construction algorithms one expects the limit 
distribution to be infinitely narrow: 

P~(~ ] D) = ~(4 - 4o) (2.9) 

i.e., a Dirac delta function centered about an algorithm-dependent covering 
fraction 4o. We suspect (but have not proved) that the patterns in Figs. 1 
and 2 provide the greatest lower bound on disk packing density, so in 
D = 2 we should find 

..< 4o ..< 2 x/- 5 ( D = 2 )  (2.101 8 

A corresponding lower limit for ~0 in D = 3 is not known to us at present. 

3. C O N C U R R E N T  C O N S T R U C T I O N  M E T H O D  

Our procedure for generating random particle packings was described 
in considerable detail in ref. 1, to which the reader is referred for additional 
information. Its principal features are the following. The basic cell QD is 
given the same size in each direction, and N points are initially (t = 0) 
placed randomly within its interior with a uniform distribution. These 
points are given initial velocities whose components are uniformly dis- 
tributed between - 1 and + 1. As time t increases, the N particles grow at 
a common rate into rigid lines, disks, spheres .... ; this growth is described 
by the monotonically and continuously increasing diameter a(t). At first 
the particles move freely and without collisions because of their small size, 
but as they grow, collisions become more frequent. This process continues 
in principle until the collision rate diverges, the stage at which jamming 
occurs. 

The collision dynamics for the expanding particles is nonconservative. 
Velocity components for a colliding pair transverse to the line of centers at 
contact are unchanged by the collision. However, the outgoing velocity 
components along the line of centers receive an increment equal to a'(t), 
and consequently the kinetic energy of the system discontinuously increases 
at each collision. This phenomenon is a significant contributor to the 
diverging collision rate at jamming, as the following heuristic argument 
shows. 
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Consider a rigid particle system just prior to the instant (t = tp) that 
it jams up in a packing with particle diameter ap. Let v( t )  and R ( t )  respec- 
tively stand for the mean particle speed and collision rate at time t < tp. 
These two quantities are related through the average distance traveled 
between collisions, so we can write 

R ( t )  = K1 v ( t ) / [ap  - a(t)] (3.1) 

where KI is a positive constant of order unity. As already mentioned, the 
collision dynamics of expanding particles is nonconservative, and each 
collision [-for v( t )  already large] increments the speed by an amount 
proportional to the rate of expansion a'(t) .  Consequently 

v'( t )  = K 2 R ( t )  a ' ( t )  (3.2) 

where K 2 is another order-unity positive constant. 
Since we are concerned with the limiting approach of t to tp, it is 

sufficient to treat the diameter growth rate as a constant, say ao. In that 
event, R ( t )  may be eliminated from Eqs. (3.1) and (3.2) to yield 

v'( t )  = K1 K2 v( t ) / ( tp  - t) (3.3) 

which integrates to 

v ( t )  = Vo(t , ,  - t )  - '~1 K2 (3.4) 

where Vo is set by the initial velocity distribution. Notice that ao has 
dropped out of this result. However, the computationally more significant 
collision rate is inversely proportional to ao: 

R ( t )  = (K~vo/ao)( t  p - t) -~IK2+ l) (3.5) 

The quantities K1 and K 2 c a n  be expected to depend significantly on 
dimension D, because the number of nearest neighbors varies strongly with 
D. For given D they can also depend (more weakly) on the specific packing 
geometry involved. 

The simplest diameter growth rule is obviously the constant rate: 

a ( t ) = a o t  (t >~O) (3.6) 

The tp will then be inversely proportional to ao, suggesting use of a 
rescaled time variable z = aot. The collision rate Ro(r)= R ( t )  in this more 
natural variable then becomes 

Ro(z  ) = Kavoa~lX2(Zp _ ~) ~K1/,:2+ 1~ (3.7) 
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The inevitable divergence of collision rate at jamming has obvious 
numerical consequences. The strict jamming limit is never quite attained, 
but only a lower limit (in time, particle diameter, covering fraction) that is 
enforced by finiteness of computing resources. As a practical matter, not 
expected to affect the outcome in a significant way, particle velocities can 
be renormalized repeatedly during late stages of the concurrent construc- 
tion calculations to relieve (but not eliminate) numerical divergence. 

In the slow-particle-expansion limit [compared to mean speed: 
a'(t) ~ v(t)] the system of particles can be expected to sample ergodically 
the accessible configuration space, at least for D > 1. (15~ However, this is 
not sufficient to ensure that equilibrium strictly be attained. The latter 
would guarantee that any finite-N system would inevitably end up in the 
most densely packed structure, in the slow-diameter-expansion limit. In fact 
such an outcome becomes increasingly unlikely as N increases. The 
explanation lies in the disconnection phenomenon noted in Section 2 for 
the available configuration space region S(a). Each time such a disconnec- 
tion occurs there will be probabilities q and 1 -  q, respectively, for being 
trapped in one of the fragments and in its complement. For the slow-par- 
ticle-expansion limit with ergodic sampling just before disconnection, these 
will be proportional to the contents of the fragment and its complement, 
and as both such contents will be positive at disconnection, both q and 
1 - q  lie between 0 and 1. 

In order for the system to attain any given packing p (we do not dis- 
tinguish arrangements that differ only by particle permutations), it must 
survive the correct sequence of branchings at all encountered fragmenta- 
tions on the way to jamming. The overall survival probability for this 
sequence (indexed by j)  can be written as the product 

Qp=~I q j < l  (3.8) 
J 

In particular this applies to the densest possible packing. With large N the 
number of factors in Eq. (3.8) will likewise be large, causing Qp to be very 
small. For large N the number of "traps" is very large into which the 
system might fall on the way to densest packing. 

If the particle expansion rate is large, the bifurcation probabilities q 
and 1 - q  would no longer exactly equal the respective region contents. 
However, somewhat modified probabilities dependent on a(t) will exist, 
still lying in the range (0, 1). The preceding argument qualitatively still 
applies; random initial conditions can only rarely be expected to produce 
the densest possible packing when N is large. 
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4. D ISK P A C K I N G S  

Disk packings are created by expanding N particles within a square 
cell with periodic boundary conditions. The initial stages of the concurrent 
construction employ a constant diameter growth rate as shown in Eq. (3.6), 
and this initial rate typically is maintained until (tp-t)/tp < 10 -3, SO that 
the system of disks is nearly in its final jammed structure. An important 
issue is how the distribution of results depends on ao in Eq. (3.6). 

A substantial fraction of our disk-packing studies to date have involved 
N =  2000. The geometric properties of these relatively large systems are 
complex, and it seems to be helpful for interpretation purposes also to 
examine the behavior of selected small systems. In particular, ref. 1 stressed 
that the case N =  27 provided a convenient prototype for observation of 
"rattler" disks. 

It is in the same spirit that we now briefly examine the N =  56 case. 
This is particularly instructive because of the near fit of the square cell with 
the close-packed triangular array of disks. Notice that the horizontal and 
vertical dimensions, respectively, of 8 rows of 7 disks are 7a and 4 xf3 a, 
with ratio 

4 x f 3 -  0.98974... (4.1) 
7 

If hypothetically the 56 disk centers were arranged in a triangular crystal 
aligned with the square cell, and uniaxially strained along the "short" direc- 
tion to fit seamlessly with periodic images, diameter growth would produce 
contact between all neighbor pairs just along rows. A simple calculation 
shows that this would occur when the covering fraction is 

2re 
= ~ = 0.8975979... (4.2) 

But clearly this is not an optimal arrangement, and indeed not even a 
packing by the definition given in Section 2. The rows of particles could be 
buckled to eliminate the contacts, permitting further particle growth and 
an increase in ~. Just how this buckling should occur to maximize ~ is not 
immediately obvious. 

In ten independent trials, each with ao = 10 -3 ,  the same final packing 
of 56 disks appeared (aside from symmetry operations of translation, 90 ~ 
rotation, and inversion). The covering fraction was found to be 

=0.898059591... (4.3) 

Figure 3 displays the structure, with bonds included to show particle 
contacts (numerically these are identified by particle surfaces closer than 
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10 - 7  of the diameter). In addition, contact triangles have been shaded for 
clarity. The small increase of ~ in Eq. (4.3) over the value in Eq. (4.2) 
represents the buckling advantage. Figure 3 shows that the extent of buckling 
is small, so superficially the disk pattern strongly resembles that of a perfect 
crystal. However, the detailed buckling pattern and set of contacts are not 
simple, so it seems surprising that essentially the same result should occur 
in all ten trials. It also seems surprising that none of the 56 particles 
experience 6 neighbor contacts; 16 contact 3 neighbors, 20 contact 4 
neighbors, and 20 contact 5 neighbors. 

The arrangement in Fig. 3 is not the only 56-disk packing. We have 
also created some lower-density examples (d ~ 0.8427) by packing 57 disks 
and then removing one of its several disks with six contacts to leave a 
vacancy. Others have been directly produced by rapid expansion (ao = 100 
initially) of 56 disks. 

The packing geometry illustrated in Fig. 3 for 56 disks can be expected 
to have relevance to at least some packings of larger numbers of disks. The 
requirement that a reasonably well-ordered grouping of particles fit tightly 

J 
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Fig. 3. Packing of 56 disks in a square cell with periodic boundary conditions 
(~ =0.898059591...). Disk pair contacts are indicated as bonds between centers, and contact 
triangles have been shaded. 

8 2 2 / 6 4 / 3 - 4 - 3  
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with its surroundings (in this case its own periodic images) can have a 
significant distorting effect. Pair contacts, always sixfold in a perfect 
crystalline array, can be broken in a complex pattern with only a small 
reduction in local covering fraction. 

Figures 4-7 present examples of 2000-disk packings. The initial growth 
rates employed in their concurrent constructions span five orders of 
magnitude: ao = 10-3 for Figs. 4 and 5, a0 ~ 3.2 for Fig. 6, and ao = 102 for 
Fig. 7. All four structures can be described as polycrystalline, in agreement 
with our earlier observations reported in ref. 1. Figures 4-7 also illustrate 
with vivid visual impact the trend toward greater packing irregularity with 
increasing initial growth rate a0, and consequent reduction in average crys- 
talline grain size. The mean grain size for the slowly grown cases in Figs. 4 

Fig. 4. Packing of 2000 disks in a square cell with periodic boundary conditions. The initial 
growth rate was a0= 10 3, and the final covering fraction is ~-0.901184607. 
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and 5 is comparable to the size of the entire cell itself, but is considerably 
smaller in the rapidly-grown packing in Fig. 7. As should consequently be 
expected, the densities (covering fractions) of slowly grown arrangements 
tend to be higher than those grown rapidly. 

These observations can be transferred to statements about the 
branching probabilities that appear in Eq. (3.8). Large growth rates bias 
the qj in favor of irregular, highly defective, packings at the expense of the 
more regular packings. 

The structures shown in Figs. 4-7 illustrate some of the same 
disk-packing features observed earlier. (1) These include vacancies and 
linear shear fractures appearing within otherwise well-ordered regions, 

Fig. 5. Pack ing  of 2000 disks  created with ini t ia l  g rowth  rate a o = 10 -3. The final pack ing  

fract ion is ~ = 0.895010191. 
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and "rattler" disks which are normally found within grain boundaries. 
Examples of the latter are highlighted in Figs. 6 and 7 as unshaded circles. 

The presence of crystalline grains as a predominant textural feature in 
disk packings has a strong influence on the pair correlation function g(r). 
Figure 8 shows a plot in histogram form of the g(r) for the packing 
exhibited in Fig. 6. By convention g(r) is normalized to unity for a random 
distribution of particle positions. The obvious characteristics shown for 
g(r) in Fig. 8 are the strong isolated peaks with a low background "noise." 
The peaks are to be associated with the neighbor distances in the perfect 
triangular array: 

r/a = (m 2 + mn + n2) 1/2 (4.4) 

Fig. 6. Packing of 2000 disks with initial growth rate ao ~- 3.2. The final packing fraction is 
= 0.882965548. 
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where m and n are integers (positive, negative, or zero). In more irregular 
packings the large-distance peaks tend to be substantially lower, and the 
"background" enhanced. 

Using once again the numerical criterion that two disks are counted as 
contacting if their surfaces are within l 0  - 7  of the diameter, the 2000 disks 
in Figure 6 have been classified by the number of contacts they experience. 
Figure 9 exhibits the results. The most frequent contact number is the 
maximum possible, six. The relatively high occurrence frequencies for 
contact numbers 5, 4, and 3 rests largely on the behavior illustrated earlier 
for 56 disks in Fig. 3, namely that the fitting requirements can distort a 
grain to create a complex pattern of broken contacts. Indeed a detailed 
study of the locations in the packing of Fig. 6 of particles with various 

Fig. 7. Packing of 2000 disks with initial growth rate a o = 102. The final packing fraction is 
4=0.852116396. 
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contact numbers seems to verify that this is so. The relatively small number 
of particles with 2, 1, or 0 contacts are those free to rattle, either in isolation 
or in a small contiguous group. 

5. SPHERE PACKINGS 

The disk-packing results reported in ref. 1 and in Section 4 provide a 
background against which rigid sphere results can be evaluated. We have 
studied the concurrent formation of sphere packings in cubic cells with 
periodic boundary conditions, using 1000 and 8000 particles. 

Figure 10 displays a packing of 1000 spheres, prepared with initial 
diameter growth rate a0=l .0 .  Its covering fraction is ~=0.63715960. 
Examination of this picture fails to reveal any polycrystallinity that was so 

~air correlation 
function 

t r: . . . . . . . . . . . . . . . .  I . . . . . . . .  i k - - -  ,,_..__ 

1.5 

I 
I 
I 

" q . . n . x , ~  

2 2.5 3.5 4 

r/a 

Fig. 8. Pair correlation function for the disk packing illustrated in Fig. 6. 
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Fig. 9. Histogram of numbers of disks in Fig. 6 with various contact numbers. 
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obvious in the rigid disk packings (Figs. 3-7). The structure is more 
uniformly irregular. This observation in fact applies to all sphere packings 
created to date by our concurrent construction method, with ao values in 
the range 10 -3 to 10 +2. 

This contrast in texture between the D = 2 and D = 3 packings is 
dramatically reflected in the contrast between pair correlation functions. 
Figure 11 shows the pair correlation function g(r) for an 8000-sphere ran- 
dom packing. Its overall form agrees qualitatively with those that have 
been reported from previous sphere packing investigations. (2-7~ A very large 
peak appears at contact of course, because the spheres are jammed. But 
unlike the disk g(r) shown earlier in Fig. 8, no subsequent peaks of com- 
parable magnitude appear. The sphere result in Fig. 1I does, however, 

Fig. 10. Packing of 1000 rigid spheres in a cube, subject to periodic boundary conditions. 
The initial diameter growth rate was a o = 1.0, and the final covering fraction is ~ = 0.63715960. 
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exhibi t  the split  second peak  tha t  has often been ment ioned  as a charac-  
terist ic s ignature  of shor t - range  order  in a m o r p h o u s  media.  (~6t At  even 
larger  separa t ions  the sphere g(r) has gentle decaying  osci l la t ions abou t  the 
a sympto t i c  value unity. 

The d i s t r ibu t ion  of spheres by contac t  number  has been calcula ted for 
the 8000-part icle pack ing  u p o n  which Fig. 11 is based. The same "10 7 
d iameter"  cr i te r ion  as before has been used. The results are presented  as a 
h i s tog ram in Fig. 12. Geomet r i ca l ly  it  is possible  for a sphere 
s imul taneous ly  to touch 12 others  (as in fcc and hcp crystals,  as well as 

~air correlation 
function 

i f i ~ i 1 . . . . . . . . . . . . . . . . . . . . . . .  ,L . . . . . . .  L . . . . . .  j 

i E i I I 
1 i i i 

1.5 2 2.5 3 3.5 4 

r/a 
Fig. !1. Pair correlation function g(r) for an 8000-sphere irregular packing. The initial 

growth rate was a 0 = 1.0 and the final packing fraction is ~ = 0.63788205. 
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Fig. 12. Distribution of contact numbers  for the 8000-sphere packing upon which Fig. 11 
is based. 
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icosahedral clusters). But none of the 8000 spheres experience 12 or even 
11 contacts; 10 is the largest contact number observed, and is realized only 
by 14 spheres. This three-dimensional characteristic is quite unlike that 
illustrated by Fig. 9 for rigid disks, where the maximum possible contact 
number is also the most probable. 

The mean contact number in Fig. 12 is 5.8295. The contacts are 
spatially organized so that on average 1.80825 contact triangles pass 
through any sphere as vertex. However, a surprisingly small average number 
of contact tetrahedra, 0.0145, employ any given sphere as a vertex, a result 
unlikely to emerge from a sequential construction procedure. 

The results in Fig. 12 reveal the presence of a substantial number of 
rattler spheres. Specifically, the numbers of particles with 0, 1, 2, and 3 con- 

Fig. 13. Planar slice through an 8000-sphere irregular packing, parallel to a face of the 
periodic cell. Shaded circles represent loci of points interior to spheres. 
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tacts are 158, 6, 2, and 16 respectively, all of which must be unjammed in 
the packing. Obviously the inclusion of rattler particles is an attribute 
shared by irregular packings in two and in three dimensions. 

On the basis of limited sampling it appears that rattler spheres tend to 
be rather uniformly distributed throughout their irregular host packings. 
Since those packings do not display a polycrystalline texture, there is 
nothing analogous to the disk-packing observation that rattlers in two 
dimensions are confined to grain boundaries. (~) 

Figures 4, 6, and 7 show obvious examples of monovacancies occur- 
ring within ordered crystalline grains. In view of nonoccurrence of 
crystalline grains in the three-dimensional packings, one might reasonably 
surmise that such discrete voids would be absent for spheres. Indeed that 
appears to be the case. The volume uncovered by spheres in any three- 
dimensional packing is multiply connected and complicated, yet may be 
studied as a sequence of slices normal to, and closely spaced along, any 
selected direction. Figure 13 shows an example of one of these slices, taken 
through an irregular 8000-sphere packing. Sequences of these views fail to 
show clear-cut cases of monovacancies, and strengthen the inference that 
irregular sphere packings are essentially devoid of crystallites. 

The density range attained by our concurrent construction of sphere 
packings is relatively narrow: 

0.63 ~< ~ ~< 0.65 ( D = 3 )  (5.!) 

There appears to be a weak tendency for the final ~ to increase with 
decreasing ao; however, the statistical variations from one case to the next 
with fixed ao tend to obscure this trend somewhat. Note that the range in 
Eq. (5.1) is a substantially smaller fraction of the close-packed maximum 
(~ = 0.7404...) than is the corresponding disk-packing range attained 

0.s5 < ~ < 0.90 (D = 2) (5.2) 

in comparison with its close-packed maximum (~ = 0.9068...). 

6. D I S C U S S I O N  

The disk and sphere irregular packings created by our concurrent con- 
struction method present clear-cut contrasts that illustrate the importance 
of spatial dimension D. The trivial case D = 1 provides one extreme, with 
only the long-range-ordered periodic packing, and ~ = 1. Upon increasing 
D to 2, packing diversity becomes possible, but even rapidly grown 
irregular packings exhibit a polycrystatline texture and substantial short- to 
intermediate-range order. However, when D increases to 3 no substantial 
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crystalline short-range order is present; typical irregular sphere packings 
are uniformly disordered. 

It would be desirable to extend the study to D = 4. In particular the 
presence of rattler particles, observed thus far in D = 2 and D = 3, would 
be an obvious focus of attention. However, the corresponding computa- 
tions would be very demanding. We suspect that more than 10 4 hyper- 
spheres would have to be considered to infer "bulk" packing properties, 
and the larger number of neighbors in this higher dimension would tend to 
slow down the procedure even on a per-particle basis. 

The enumeration of hard particle packings remains an open problem. 
It is reasonable to suppose that the number of distinct packings f~,~(N, D) 
for N particles in D dimensions is asymptotically exponential in N: 

InQd(N,D)~(D)N (N~oo) (6.1) 

All one knows for certain is that ~(1) vanishes. Nevertheless one might 
postulate the following: 

0 = a(1) < ~(2) < c~(3) < c~(4)... (6.2) 

citing the noncrystallinity of sphere packings (D = 3) as evidence that many 
more geometric options are available for packing than with disks (D = 2). 

An issue apparently untouched in all random disk or sphere packing 
studies to date is the nature of the interface between macroscopic crys- 
talline and amorphous regions. An extension of our approach could be for- 
mulated to handle this case. Particles of the crystalline portion could be 
held fixed in both position and size while the amorphous portion would be 
grown as discussed above. The fixed crystalline substrate particles would 
initially have to be shielded from invasion by the initially small particles 
of the amorphous set. Later, both sets of particles could grow in step till 
jamming occurred. The resulting inhomogeneous packings could be 
surveyed to determine the width and character of the transition zone. 

Lastly, we mention the obvious extension to mixtures of disks or of 
spheres with different sizes. This simply requires introduction of separate 
time-dependent diameter functions a~(t) for each species v. It seems 
obvious that presence of a minor fraction of small particles compared to 
the rest all of larger size will mainly produce rattlers. This should be par- 
ticularly noticeable for D = 2, and the small-particle rattlers would not be 
confined to grain boundaries. But when roughly equal numbers of small 
and of larger particles are present, the nature of the packings is not obvious 
and deserves study. In particular the dependence of results on expansion 
rate may be particularly significant because of segregation processes. 
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